1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
//! # nom, eating data byte by byte //! //! nom is a parser combinator library with a focus on safe parsing, //! streaming patterns, and as much as possible zero copy. //! //! ## Example //! //! ```rust //! #[macro_use] //! extern crate nom; //! //! #[derive(Debug,PartialEq)] //! pub struct Color { //! pub red: u8, //! pub green: u8, //! pub blue: u8, //! } //! //! fn from_hex(input: &str) -> Result<u8, std::num::ParseIntError> { //! u8::from_str_radix(input, 16) //! } //! //! fn is_hex_digit(c: char) -> bool { //! c.is_digit(16) //! } //! //! named!(hex_primary<&str, u8>, //! map_res!(take_while_m_n!(2, 2, is_hex_digit), from_hex) //! ); //! //! named!(hex_color<&str, Color>, //! do_parse!( //! tag!("#") >> //! red: hex_primary >> //! green: hex_primary >> //! blue: hex_primary >> //! (Color { red, green, blue }) //! ) //! ); //! //! fn main() { //! assert_eq!(hex_color("#2F14DF"), Ok(("", Color { //! red: 47, //! green: 20, //! blue: 223, //! }))); //! } //! ``` //! //! The code is available on [Github](https://github.com/Geal/nom) //! //! There are a few [guides](https://github.com/Geal/nom/tree/master/doc) with more details //! about [the design of nom](https://github.com/Geal/nom/blob/master/doc/how_nom_macros_work.md), //! [how to write parsers](https://github.com/Geal/nom/blob/master/doc/making_a_new_parser_from_scratch.md), //! or the [error management system](https://github.com/Geal/nom/blob/master/doc/error_management.md). //! //! **Looking for a specific combinator? Read the //! ["choose a combinator" guide](https://github.com/Geal/nom/blob/master/doc/choosing_a_combinator.md)** //! //! If you are upgrading to nom 2.0, please read the //! [migration document](https://github.com/Geal/nom/blob/master/doc/upgrading_to_nom_2.md). //! //! If you are upgrading to nom 4.0, please read the //! [migration document](https://github.com/Geal/nom/blob/master/doc/upgrading_to_nom_4.md). //! //! See also the [FAQ](https://github.com/Geal/nom/blob/master/doc/FAQ.md). //! //! ## Parser combinators //! //! Parser combinators are an approach to parsers that is very different from //! software like [lex](https://en.wikipedia.org/wiki/Lex_(software)) and //! [yacc](https://en.wikipedia.org/wiki/Yacc). Instead of writing the grammar //! in a separate file and generating the corresponding code, you use very small //! functions with very specific purpose, like "take 5 bytes", or "recognize the //! word 'HTTP'", and assemble then in meaningful patterns like "recognize //! 'HTTP', then a space, then a version". //! The resulting code is small, and looks like the grammar you would have //! written with other parser approaches. //! //! This has a few advantages: //! //! - the parsers are small and easy to write //! - the parsers components are easy to reuse (if they're general enough, please add them to nom!) //! - the parsers components are easy to test separately (unit tests and property-based tests) //! - the parser combination code looks close to the grammar you would have written //! - you can build partial parsers, specific to the data you need at the moment, and ignore the rest //! //! Here is an example of one such parser, to recognize text between parentheses: //! //! ```rust //! #[macro_use] //! extern crate nom; //! //! # fn main() { //! named!(parens, delimited!(char!('('), is_not!(")"), char!(')'))); //! # } //! ``` //! //! It defines a function named `parens`, which will recognize a sequence of the character `(`, the longest byte array not containing `)`, then the character `)`, and will return the byte array in the middle. //! //! Here is another parser, written without using nom's macros this time: //! //! ```rust //! #[macro_use] //! extern crate nom; //! //! use nom::{IResult,Err,Needed}; //! //! # fn main() { //! fn take4(i:&[u8]) -> IResult<&[u8], &[u8]>{ //! if i.len() < 4 { //! Err(Err::Incomplete(Needed::Size(4))) //! } else { //! Ok((&i[4..],&i[0..4])) //! } //! } //! # } //! ``` //! //! This function takes a byte array as input, and tries to consume 4 bytes. //! Writing all the parsers manually, like this, is dangerous, despite Rust's safety features. There //! are still a lot of mistakes one can make. That's why nom provides a list of macros to help in //! developing parsers. //! //! With macros, you would write it like this: //! //! ```rust //! #[macro_use] //! extern crate nom; //! //! # fn main() { //! named!(take4, take!(4)); //! # } //! ``` //! //! A parser in nom is a function which, for an input type `I`, an output type `O` //! and an optional error type `E`, will have the following signature: //! //! ```rust,ignore //! fn parser(input: I) -> IResult<I, O, E>; //! ``` //! //! Or like this, if you don't want to specify a custom error type (it will be `u32` by default): //! //! ```rust,ignore //! fn parser(input: I) -> IResult<I, O>; //! ``` //! //! `IResult` is an alias for the `Result` type: //! //! ```rust //! use nom::{Needed, Context}; //! //! type IResult<I, O, E = u32> = Result<(I, O), Err<I, E>>; //! //! enum Err<I, E = u32> { //! Incomplete(Needed), //! Error(Context<I, E>), //! Failure(Context<I, E>), //! } //! ``` //! //! It can have the following values: //! //! - a correct result `Ok((I,O))` with the first element being the remaining of the input (not parsed yet), and the second the output value; //! - an error `Err(Err::Error(c))` with `c` an enum that contains an error code with its position in the input, and optionally a chain of accumulated errors; //! - an error `Err(Err::Incomplete(Needed))` indicating that more input is necessary. `Needed` can indicate how much data is needed //! - an error `Err(Err::Failure(c))`. It works like the `Error` case, except it indicates an unrecoverable error: we cannot backtrack and test another parser //! //! Please refer to the [documentation][doc] for an exhaustive list of parsers. See also the //! ["choose a combinator" guide](https://github.com/Geal/nom/blob/master/doc/choosing_a_combinator.md)**. //! //! ## Making new parsers with macros //! //! Macros are the main way to make new parsers by combining other ones. Those macros accept other macros or function names as arguments. You then need to make a function out of that combinator with **`named!`**, or a closure with **`closure!`**. Here is how you would do, with the **`tag!`** and **`take!`** combinators: //! //! ```rust //! # #[macro_use] extern crate nom; //! # fn main() { //! named!(abcd_parser, tag!("abcd")); // will consume bytes if the input begins with "abcd" //! //! named!(take_10, take!(10)); // will consume and return 10 bytes of input //! # } //! ``` //! //! The **`named!`** macro can take three different syntaxes: //! //! ```rust,ignore //! named!(my_function( &[u8] ) -> &[u8], tag!("abcd")); //! //! named!(my_function<&[u8], &[u8]>, tag!("abcd")); //! //! named!(my_function, tag!("abcd")); // when you know the parser takes &[u8] as input, and returns &[u8] as output //! ``` //! //! **IMPORTANT NOTE**: Rust's macros can be very sensitive to the syntax, so you may encounter an error compiling parsers like this one: //! //! ```rust //! # #[macro_use] extern crate nom; //! # #[cfg(feature = "alloc")] //! # fn main() { //! named!(my_function<&[u8], Vec<&[u8]>>, many0!(tag!("abcd"))); //! # } //! //! # #[cfg(not(feature = "alloc"))] //! # fn main() {} //! ``` //! //! You will get the following error: `error: expected an item keyword`. This //! happens because `>>` is seen as an operator, so the macro parser does not //! recognize what we want. There is a way to avoid it, by inserting a space: //! //! ```rust //! # #[macro_use] extern crate nom; //! # #[cfg(feature = "alloc")] //! # fn main() { //! named!(my_function<&[u8], Vec<&[u8]> >, many0!(tag!("abcd"))); //! # } //! # #[cfg(not(feature = "alloc"))] //! # fn main() {} //! ``` //! //! This will compile correctly. I am very sorry for this inconvenience. //! //! ## Combining parsers //! //! There are more high level patterns, like the **`alt!`** combinator, which provides a choice between multiple parsers. If one branch fails, it tries the next, and returns the result of the first parser that succeeds: //! //! ```rust //! # #[macro_use] extern crate nom; //! # fn main() { //! named!(alt_tags, alt!(tag!("abcd") | tag!("efgh"))); //! //! assert_eq!(alt_tags(b"abcdxxx"), Ok((&b"xxx"[..], &b"abcd"[..]))); //! assert_eq!(alt_tags(b"efghxxx"), Ok((&b"xxx"[..], &b"efgh"[..]))); //! assert_eq!(alt_tags(b"ijklxxx"), Err(nom::Err::Error(error_position!(&b"ijklxxx"[..], nom::ErrorKind::Alt)))); //! # } //! ``` //! //! The pipe `|` character is used as separator. //! //! The **`opt!`** combinator makes a parser optional. If the child parser returns an error, **`opt!`** will succeed and return None: //! //! ```rust //! # #[macro_use] extern crate nom; //! # fn main() { //! named!( abcd_opt< &[u8], Option<&[u8]> >, opt!( tag!("abcd") ) ); //! //! assert_eq!(abcd_opt(b"abcdxxx"), Ok((&b"xxx"[..], Some(&b"abcd"[..])))); //! assert_eq!(abcd_opt(b"efghxxx"), Ok((&b"efghxxx"[..], None))); //! # } //! ``` //! //! **`many0!`** applies a parser 0 or more times, and returns a vector of the aggregated results: //! //! ```rust //! # #[macro_use] extern crate nom; //! # #[cfg(feature = "alloc")] //! # fn main() { //! use std::str; //! //! named!(multi< Vec<&str> >, many0!( map_res!(tag!( "abcd" ), str::from_utf8) ) ); //! let a = b"abcdef"; //! let b = b"abcdabcdef"; //! let c = b"azerty"; //! assert_eq!(multi(a), Ok((&b"ef"[..], vec!["abcd"]))); //! assert_eq!(multi(b), Ok((&b"ef"[..], vec!["abcd", "abcd"]))); //! assert_eq!(multi(c), Ok((&b"azerty"[..], Vec::new()))); //! # } //! # #[cfg(not(feature = "alloc"))] //! # fn main() {} //! ``` //! //! Here are some basic combining macros available: //! //! - **`opt!`**: will make the parser optional (if it returns the `O` type, the new parser returns `Option<O>`) //! - **`many0!`**: will apply the parser 0 or more times (if it returns the `O` type, the new parser returns `Vec<O>`) //! - **`many1!`**: will apply the parser 1 or more times //! //! There are more complex (and more useful) parsers like `do_parse!` and `tuple!`, which are used to apply a series of parsers then assemble their results. //! //! Example with `tuple!`: //! //! ```rust //! # #[macro_use] extern crate nom; //! # fn main() { //! use nom::{ErrorKind, Needed,be_u16}; //! //! named!(tpl<&[u8], (u16, &[u8], &[u8]) >, //! tuple!( //! be_u16 , //! take!(3), //! tag!("fg") //! ) //! ); //! //! assert_eq!( //! tpl(&b"abcdefgh"[..]), //! Ok(( //! &b"h"[..], //! (0x6162u16, &b"cde"[..], &b"fg"[..]) //! )) //! ); //! assert_eq!(tpl(&b"abcde"[..]), Err(nom::Err::Incomplete(Needed::Size(2)))); //! let input = &b"abcdejk"[..]; //! assert_eq!(tpl(input), Err(nom::Err::Error(error_position!(&input[5..], ErrorKind::Tag)))); //! # } //! ``` //! //! Example with `do_parse!`: //! //! ```rust //! # #[macro_use] extern crate nom; //! # fn main() { //! use nom::IResult; //! //! #[derive(Debug, PartialEq)] //! struct A { //! a: u8, //! b: u8 //! } //! //! fn ret_int1(i:&[u8]) -> IResult<&[u8], u8> { Ok((i,1)) } //! fn ret_int2(i:&[u8]) -> IResult<&[u8], u8> { Ok((i,2)) } //! //! named!(f<&[u8],A>, //! do_parse!( // the parser takes a byte array as input, and returns an A struct //! tag!("abcd") >> // begins with "abcd" //! opt!(tag!("abcd")) >> // this is an optional parser //! aa: ret_int1 >> // the return value of ret_int1, if it does not fail, will be stored in aa //! tag!("efgh") >> //! bb: ret_int2 >> //! tag!("efgh") >> //! //! (A{a: aa, b: bb}) // the final tuple will be able to use the variable defined previously //! ) //! ); //! //! let r = f(b"abcdabcdefghefghX"); //! assert_eq!(r, Ok((&b"X"[..], A{a: 1, b: 2}))); //! //! let r2 = f(b"abcdefghefghX"); //! assert_eq!(r2, Ok((&b"X"[..], A{a: 1, b: 2}))); //! # } //! ``` //! //! The double right arrow `>>` is used as separator between every parser in the sequence, and the last closure can see the variables storing the result of parsers. Unless the specified return type is already a tuple, the final line should be that type wrapped in a tuple. //! //! More examples of [`do_parse!`](macro.do_parse.html) and [`tuple!`](macro.tuple.html) usage can be found in the [INI file parser example](tests/ini.rs). //! //! **Going further:** read the [guides](https://github.com/Geal/nom/tree/master/doc)! #![cfg_attr(all(not(feature = "std"), feature = "alloc"), feature(alloc))] #![cfg_attr(not(feature = "std"), no_std)] //#![warn(missing_docs)] #![cfg_attr(feature = "cargo-clippy", allow(doc_markdown))] #![cfg_attr(nightly, feature(test))] #[cfg(all(not(feature = "std"), feature = "alloc"))] #[macro_use] extern crate alloc; #[cfg(feature = "regexp_macros")] #[macro_use] extern crate lazy_static; extern crate memchr; #[cfg(feature = "regexp")] extern crate regex; #[cfg(nightly)] extern crate test; /// Lib module to re-export everything needed from `std` or `core`/`alloc`. This is how `serde` does /// it, albeit there it is not public. pub mod lib { /// `std` facade allowing `std`/`core` to be interchangeable. Reexports `alloc` crate optionally, /// as well as `core` or `std` #[cfg(not(feature = "std"))] pub mod std { #[cfg(feature = "alloc")] #[cfg_attr(feature = "alloc", macro_use)] pub use alloc::{boxed, string, vec}; pub use core::{cmp, convert, fmt, iter, mem, ops, option, result, slice, str}; pub mod prelude { pub use core::prelude as v1; } } #[cfg(feature = "std")] pub mod std { pub use std::{boxed, cmp, collections, convert, fmt, hash, iter, mem, ops, option, result, slice, str, string, vec}; pub mod prelude { pub use std::prelude as v1; } } } pub use self::traits::*; pub use self::util::*; #[cfg(feature = "verbose-errors")] pub use self::verbose_errors::*; #[cfg(not(feature = "verbose-errors"))] pub use self::simple_errors::*; pub use self::branch::*; pub use self::internal::*; pub use self::macros::*; pub use self::methods::*; pub use self::multi::*; pub use self::sequence::*; pub use self::bits::*; pub use self::bytes::*; pub use self::character::*; pub use self::nom::*; pub use self::whitespace::*; #[cfg(feature = "regexp")] pub use self::regexp::*; pub use self::str::*; #[macro_use] mod util; #[cfg(feature = "verbose-errors")] #[macro_use] pub mod verbose_errors; #[cfg(not(feature = "verbose-errors"))] #[macro_use] pub mod simple_errors; #[macro_use] mod internal; mod traits; #[macro_use] mod macros; #[macro_use] mod branch; #[macro_use] mod sequence; #[macro_use] mod multi; #[macro_use] pub mod methods; #[macro_use] mod bytes; #[macro_use] pub mod bits; #[macro_use] mod character; #[macro_use] mod nom; #[macro_use] pub mod whitespace; #[cfg(feature = "regexp")] #[macro_use] mod regexp; mod str; pub mod types;