[−][src]Struct nom::types::CompleteStr
Holds a complete String, for which the at_eof
method always returns true
This means that this input type will completely avoid nom's streaming features
and Incomplete
results.
Methods from Deref<Target = &'a str>
pub const fn len(&self) -> usize
1.0.0[src]
pub const fn len(&self) -> usize
Returns the length of self
.
This length is in bytes, not [char
]s or graphemes. In other words,
it may not be what a human considers the length of the string.
Examples
Basic usage:
let len = "foo".len(); assert_eq!(3, len); let len = "ƒoo".len(); // fancy f! assert_eq!(4, len);
pub const fn is_empty(&self) -> bool
1.0.0[src]
pub const fn is_empty(&self) -> bool
Returns true
if self
has a length of zero bytes.
Examples
Basic usage:
let s = ""; assert!(s.is_empty()); let s = "not empty"; assert!(!s.is_empty());
pub fn is_char_boundary(&self, index: usize) -> bool
1.9.0[src]
pub fn is_char_boundary(&self, index: usize) -> bool
Checks that index
-th byte lies at the start and/or end of a
UTF-8 code point sequence.
The start and end of the string (when index == self.len()
) are
considered to be
boundaries.
Returns false
if index
is greater than self.len()
.
Examples
let s = "Löwe 老虎 Léopard"; assert!(s.is_char_boundary(0)); // start of `老` assert!(s.is_char_boundary(6)); assert!(s.is_char_boundary(s.len())); // second byte of `ö` assert!(!s.is_char_boundary(2)); // third byte of `老` assert!(!s.is_char_boundary(8));
pub const fn as_bytes(&self) -> &[u8]
1.0.0[src]
pub const fn as_bytes(&self) -> &[u8]
Converts a string slice to a byte slice. To convert the byte slice back
into a string slice, use the str::from_utf8
function.
Examples
Basic usage:
let bytes = "bors".as_bytes(); assert_eq!(b"bors", bytes);
pub const fn as_ptr(&self) -> *const u8
1.0.0[src]
pub const fn as_ptr(&self) -> *const u8
Converts a string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8
. This pointer will be pointing to the first byte of the string
slice.
Examples
Basic usage:
let s = "Hello"; let ptr = s.as_ptr();
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output> where
I: SliceIndex<str>,
1.20.0[src]
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output> where
I: SliceIndex<str>,
Returns a subslice of str
.
This is the non-panicking alternative to indexing the str
. Returns
None
whenever equivalent indexing operation would panic.
Examples
let v = String::from("🗻∈🌏"); assert_eq!(Some("🗻"), v.get(0..4)); // indices not on UTF-8 sequence boundaries assert!(v.get(1..).is_none()); assert!(v.get(..8).is_none()); // out of bounds assert!(v.get(..42).is_none());
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Output where
I: SliceIndex<str>,
1.20.0[src]
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Output where
I: SliceIndex<str>,
Returns a unchecked subslice of str
.
This is the unchecked alternative to indexing the str
.
Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must come before the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str
type.
Examples
let v = "🗻∈🌏"; unsafe { assert_eq!("🗻", v.get_unchecked(0..4)); assert_eq!("∈", v.get_unchecked(4..7)); assert_eq!("🌏", v.get_unchecked(7..11)); }
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
1.0.0[src]
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str
: use get_unchecked(begin..end)
instead
Creates a string slice from another string slice, bypassing safety checks.
This is generally not recommended, use with caution! For a safe
alternative see str
and Index
.
This new slice goes from begin
to end
, including begin
but
excluding end
.
To get a mutable string slice instead, see the
slice_mut_unchecked
method.
Safety
Callers of this function are responsible that three preconditions are satisfied:
begin
must come beforeend
.begin
andend
must be byte positions within the string slice.begin
andend
must lie on UTF-8 sequence boundaries.
Examples
Basic usage:
let s = "Löwe 老虎 Léopard"; unsafe { assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21)); } let s = "Hello, world!"; unsafe { assert_eq!("world", s.slice_unchecked(7, 12)); }
pub fn split_at(&self, mid: usize) -> (&str, &str)
1.4.0[src]
pub fn split_at(&self, mid: usize) -> (&str, &str)
Divide one string slice into two at an index.
The argument, mid
, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid
,
and from mid
to the end of the string slice.
To get mutable string slices instead, see the split_at_mut
method.
Panics
Panics if mid
is not on a UTF-8 code point boundary, or if it is
beyond the last code point of the string slice.
Examples
Basic usage:
let s = "Per Martin-Löf"; let (first, last) = s.split_at(3); assert_eq!("Per", first); assert_eq!(" Martin-Löf", last);
ⓘImportant traits for Chars<'a>pub fn chars(&self) -> Chars
1.0.0[src]
pub fn chars(&self) -> Chars
Returns an iterator over the [char
]s of a string slice.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by [char
]. This method returns such an iterator.
It's important to remember that [char
] represents a Unicode Scalar
Value, and may not match your idea of what a 'character' is. Iteration
over grapheme clusters may be what you actually want.
Examples
Basic usage:
let word = "goodbye"; let count = word.chars().count(); assert_eq!(7, count); let mut chars = word.chars(); assert_eq!(Some('g'), chars.next()); assert_eq!(Some('o'), chars.next()); assert_eq!(Some('o'), chars.next()); assert_eq!(Some('d'), chars.next()); assert_eq!(Some('b'), chars.next()); assert_eq!(Some('y'), chars.next()); assert_eq!(Some('e'), chars.next()); assert_eq!(None, chars.next());
Remember, [char
]s may not match your human intuition about characters:
let y = "y̆"; let mut chars = y.chars(); assert_eq!(Some('y'), chars.next()); // not 'y̆' assert_eq!(Some('\u{0306}'), chars.next()); assert_eq!(None, chars.next());
ⓘImportant traits for CharIndices<'a>pub fn char_indices(&self) -> CharIndices
1.0.0[src]
pub fn char_indices(&self) -> CharIndices
Returns an iterator over the [char
]s of a string slice, and their
positions.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by [char
]. This method returns an iterator of both
these [char
]s, as well as their byte positions.
The iterator yields tuples. The position is first, the [char
] is
second.
Examples
Basic usage:
let word = "goodbye"; let count = word.char_indices().count(); assert_eq!(7, count); let mut char_indices = word.char_indices(); assert_eq!(Some((0, 'g')), char_indices.next()); assert_eq!(Some((1, 'o')), char_indices.next()); assert_eq!(Some((2, 'o')), char_indices.next()); assert_eq!(Some((3, 'd')), char_indices.next()); assert_eq!(Some((4, 'b')), char_indices.next()); assert_eq!(Some((5, 'y')), char_indices.next()); assert_eq!(Some((6, 'e')), char_indices.next()); assert_eq!(None, char_indices.next());
Remember, [char
]s may not match your human intuition about characters:
let yes = "y̆es"; let mut char_indices = yes.char_indices(); assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆') assert_eq!(Some((1, '\u{0306}')), char_indices.next()); // note the 3 here - the last character took up two bytes assert_eq!(Some((3, 'e')), char_indices.next()); assert_eq!(Some((4, 's')), char_indices.next()); assert_eq!(None, char_indices.next());
ⓘImportant traits for Bytes<'a>pub fn bytes(&self) -> Bytes
1.0.0[src]
pub fn bytes(&self) -> Bytes
An iterator over the bytes of a string slice.
As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.
Examples
Basic usage:
let mut bytes = "bors".bytes(); assert_eq!(Some(b'b'), bytes.next()); assert_eq!(Some(b'o'), bytes.next()); assert_eq!(Some(b'r'), bytes.next()); assert_eq!(Some(b's'), bytes.next()); assert_eq!(None, bytes.next());
ⓘImportant traits for SplitWhitespace<'a>pub fn split_whitespace(&self) -> SplitWhitespace
1.1.0[src]
pub fn split_whitespace(&self) -> SplitWhitespace
Split a string slice by whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.
'Whitespace' is defined according to the terms of the Unicode Derived
Core Property White_Space
. If you only want to split on ASCII whitespace
instead, use split_ascii_whitespace
.
Examples
Basic usage:
let mut iter = "A few words".split_whitespace(); assert_eq!(Some("A"), iter.next()); assert_eq!(Some("few"), iter.next()); assert_eq!(Some("words"), iter.next()); assert_eq!(None, iter.next());
All kinds of whitespace are considered:
let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace(); assert_eq!(Some("Mary"), iter.next()); assert_eq!(Some("had"), iter.next()); assert_eq!(Some("a"), iter.next()); assert_eq!(Some("little"), iter.next()); assert_eq!(Some("lamb"), iter.next()); assert_eq!(None, iter.next());
ⓘImportant traits for SplitAsciiWhitespace<'a>pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace
[src]
pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace
split_ascii_whitespace
)Split a string slice by ASCII whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of ASCII whitespace.
To split by Unicode Whitespace
instead, use split_whitespace
.
Examples
Basic usage:
#![feature(split_ascii_whitespace)] let mut iter = "A few words".split_ascii_whitespace(); assert_eq!(Some("A"), iter.next()); assert_eq!(Some("few"), iter.next()); assert_eq!(Some("words"), iter.next()); assert_eq!(None, iter.next());
All kinds of ASCII whitespace are considered:
let mut iter = " Mary had\ta little \n\t lamb".split_whitespace(); assert_eq!(Some("Mary"), iter.next()); assert_eq!(Some("had"), iter.next()); assert_eq!(Some("a"), iter.next()); assert_eq!(Some("little"), iter.next()); assert_eq!(Some("lamb"), iter.next()); assert_eq!(None, iter.next());
ⓘImportant traits for Lines<'a>pub fn lines(&self) -> Lines
1.0.0[src]
pub fn lines(&self) -> Lines
An iterator over the lines of a string, as string slices.
Lines are ended with either a newline (\n
) or a carriage return with
a line feed (\r\n
).
The final line ending is optional.
Examples
Basic usage:
let text = "foo\r\nbar\n\nbaz\n"; let mut lines = text.lines(); assert_eq!(Some("foo"), lines.next()); assert_eq!(Some("bar"), lines.next()); assert_eq!(Some(""), lines.next()); assert_eq!(Some("baz"), lines.next()); assert_eq!(None, lines.next());
The final line ending isn't required:
let text = "foo\nbar\n\r\nbaz"; let mut lines = text.lines(); assert_eq!(Some("foo"), lines.next()); assert_eq!(Some("bar"), lines.next()); assert_eq!(Some(""), lines.next()); assert_eq!(Some("baz"), lines.next()); assert_eq!(None, lines.next());
ⓘImportant traits for LinesAny<'a>pub fn lines_any(&self) -> LinesAny
1.0.0[src]
pub fn lines_any(&self) -> LinesAny
: use lines() instead now
An iterator over the lines of a string.
ⓘImportant traits for EncodeUtf16<'a>pub fn encode_utf16(&self) -> EncodeUtf16
1.8.0[src]
pub fn encode_utf16(&self) -> EncodeUtf16
Returns an iterator of u16
over the string encoded as UTF-16.
Examples
Basic usage:
let text = "Zażółć gęślą jaźń"; let utf8_len = text.len(); let utf16_len = text.encode_utf16().count(); assert!(utf16_len <= utf8_len);
pub fn contains<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
1.0.0[src]
pub fn contains<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
Returns true
if the given pattern matches a sub-slice of
this string slice.
Returns false
if it does not.
Examples
Basic usage:
let bananas = "bananas"; assert!(bananas.contains("nana")); assert!(!bananas.contains("apples"));
pub fn starts_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
1.0.0[src]
pub fn starts_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
Returns true
if the given pattern matches a prefix of this
string slice.
Returns false
if it does not.
Examples
Basic usage:
let bananas = "bananas"; assert!(bananas.starts_with("bana")); assert!(!bananas.starts_with("nana"));
pub fn ends_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
1.0.0[src]
pub fn ends_with<'a, P>(&'a self, pat: P) -> bool where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Returns true
if the given pattern matches a suffix of this
string slice.
Returns false
if it does not.
Examples
Basic usage:
let bananas = "bananas"; assert!(bananas.ends_with("anas")); assert!(!bananas.ends_with("nana"));
pub fn find<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>,
1.0.0[src]
pub fn find<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>,
Returns the byte index of the first character of this string slice that matches the pattern.
Returns None
if the pattern doesn't match.
The pattern can be a &str
, [char
], or a closure that determines if
a character matches.
Examples
Simple patterns:
let s = "Löwe 老虎 Léopard"; assert_eq!(s.find('L'), Some(0)); assert_eq!(s.find('é'), Some(14)); assert_eq!(s.find("Léopard"), Some(13));
More complex patterns using point-free style and closures:
let s = "Löwe 老虎 Léopard"; assert_eq!(s.find(char::is_whitespace), Some(5)); assert_eq!(s.find(char::is_lowercase), Some(1)); assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1)); assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
Not finding the pattern:
let s = "Löwe 老虎 Léopard"; let x: &[_] = &['1', '2']; assert_eq!(s.find(x), None);
pub fn rfind<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
1.0.0[src]
pub fn rfind<'a, P>(&'a self, pat: P) -> Option<usize> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Returns the byte index of the last character of this string slice that matches the pattern.
Returns None
if the pattern doesn't match.
The pattern can be a &str
, [char
], or a closure that determines if
a character matches.
Examples
Simple patterns:
let s = "Löwe 老虎 Léopard"; assert_eq!(s.rfind('L'), Some(13)); assert_eq!(s.rfind('é'), Some(14));
More complex patterns with closures:
let s = "Löwe 老虎 Léopard"; assert_eq!(s.rfind(char::is_whitespace), Some(12)); assert_eq!(s.rfind(char::is_lowercase), Some(20));
Not finding the pattern:
let s = "Löwe 老虎 Léopard"; let x: &[_] = &['1', '2']; assert_eq!(s.rfind(x), None);
ⓘImportant traits for Split<'a, P>pub fn split<'a, P>(&'a self, pat: P) -> Split<'a, P> where
P: Pattern<'a>,
1.0.0[src]
pub fn split<'a, P>(&'a self, pat: P) -> Split<'a, P> where
P: Pattern<'a>,
An iterator over substrings of this string slice, separated by characters matched by a pattern.
The pattern can be a &str
, [char
], or a closure that determines the
split.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, eg, [char
] but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit
method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".split(' ').collect(); assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]); let v: Vec<&str> = "".split('X').collect(); assert_eq!(v, [""]); let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect(); assert_eq!(v, ["lion", "", "tiger", "leopard"]); let v: Vec<&str> = "lion::tiger::leopard".split("::").collect(); assert_eq!(v, ["lion", "tiger", "leopard"]); let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect(); assert_eq!(v, ["abc", "def", "ghi"]); let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect(); assert_eq!(v, ["lion", "tiger", "leopard"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect(); assert_eq!(v, ["abc", "def", "ghi"]);
If a string contains multiple contiguous separators, you will end up with empty strings in the output:
let x = "||||a||b|c".to_string(); let d: Vec<_> = x.split('|').collect(); assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
Contiguous separators are separated by the empty string.
let x = "(///)".to_string(); let d: Vec<_> = x.split('/').collect(); assert_eq!(d, &["(", "", "", ")"]);
Separators at the start or end of a string are neighbored by empty strings.
let d: Vec<_> = "010".split("0").collect(); assert_eq!(d, &["", "1", ""]);
When the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.
let f: Vec<_> = "rust".split("").collect(); assert_eq!(f, &["", "r", "u", "s", "t", ""]);
Contiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:
let x = " a b c".to_string(); let d: Vec<_> = x.split(' ').collect(); assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
It does not give you:
assert_eq!(d, &["a", "b", "c"]);
Use split_whitespace
for this behavior.
ⓘImportant traits for RSplit<'a, P>pub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
1.0.0[src]
pub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
An iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.
The pattern can be a &str
, [char
], or a closure that determines the
split.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the split
method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect(); assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]); let v: Vec<&str> = "".rsplit('X').collect(); assert_eq!(v, [""]); let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect(); assert_eq!(v, ["leopard", "tiger", "", "lion"]); let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect(); assert_eq!(v, ["leopard", "tiger", "lion"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect(); assert_eq!(v, ["ghi", "def", "abc"]);
ⓘImportant traits for SplitTerminator<'a, P>pub fn split_terminator<'a, P>(&'a self, pat: P) -> SplitTerminator<'a, P> where
P: Pattern<'a>,
1.0.0[src]
pub fn split_terminator<'a, P>(&'a self, pat: P) -> SplitTerminator<'a, P> where
P: Pattern<'a>,
An iterator over substrings of the given string slice, separated by characters matched by a pattern.
The pattern can be a &str
, [char
], or a closure that determines the
split.
Equivalent to split
, except that the trailing substring
is skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, eg, [char
] but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit_terminator
method can be used.
Examples
Basic usage:
let v: Vec<&str> = "A.B.".split_terminator('.').collect(); assert_eq!(v, ["A", "B"]); let v: Vec<&str> = "A..B..".split_terminator(".").collect(); assert_eq!(v, ["A", "", "B", ""]);
ⓘImportant traits for RSplitTerminator<'a, P>pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
1.0.0[src]
pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
An iterator over substrings of self
, separated by characters
matched by a pattern and yielded in reverse order.
The pattern can be a simple &str
, [char
], or a closure that
determines the split.
Additional libraries might provide more complex patterns like
regular expressions.
Equivalent to split
, except that the trailing substring is
skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
Iterator behavior
The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.
For iterating from the front, the split_terminator
method can be
used.
Examples
let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect(); assert_eq!(v, ["B", "A"]); let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect(); assert_eq!(v, ["", "B", "", "A"]);
ⓘImportant traits for SplitN<'a, P>pub fn splitn<'a, P>(&'a self, n: usize, pat: P) -> SplitN<'a, P> where
P: Pattern<'a>,
1.0.0[src]
pub fn splitn<'a, P>(&'a self, n: usize, pat: P) -> SplitN<'a, P> where
P: Pattern<'a>,
An iterator over substrings of the given string slice, separated by a
pattern, restricted to returning at most n
items.
If n
substrings are returned, the last substring (the n
th substring)
will contain the remainder of the string.
The pattern can be a &str
, [char
], or a closure that determines the
split.
Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
If the pattern allows a reverse search, the rsplitn
method can be
used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect(); assert_eq!(v, ["Mary", "had", "a little lambda"]); let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect(); assert_eq!(v, ["lion", "", "tigerXleopard"]); let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect(); assert_eq!(v, ["abcXdef"]); let v: Vec<&str> = "".splitn(1, 'X').collect(); assert_eq!(v, [""]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect(); assert_eq!(v, ["abc", "defXghi"]);
ⓘImportant traits for RSplitN<'a, P>pub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
1.0.0[src]
pub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
An iterator over substrings of this string slice, separated by a
pattern, starting from the end of the string, restricted to returning
at most n
items.
If n
substrings are returned, the last substring (the n
th substring)
will contain the remainder of the string.
The pattern can be a &str
, [char
], or a closure that
determines the split.
Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
For splitting from the front, the splitn
method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect(); assert_eq!(v, ["lamb", "little", "Mary had a"]); let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect(); assert_eq!(v, ["leopard", "tiger", "lionX"]); let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect(); assert_eq!(v, ["leopard", "lion::tiger"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect(); assert_eq!(v, ["ghi", "abc1def"]);
ⓘImportant traits for Matches<'a, P>pub fn matches<'a, P>(&'a self, pat: P) -> Matches<'a, P> where
P: Pattern<'a>,
1.2.0[src]
pub fn matches<'a, P>(&'a self, pat: P) -> Matches<'a, P> where
P: Pattern<'a>,
An iterator over the disjoint matches of a pattern within the given string slice.
The pattern can be a &str
, [char
], or a closure that
determines if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, eg, [char
] but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatches
method can be used.
Examples
Basic usage:
let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect(); assert_eq!(v, ["abc", "abc", "abc"]); let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect(); assert_eq!(v, ["1", "2", "3"]);
ⓘImportant traits for RMatches<'a, P>pub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
1.2.0[src]
pub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
An iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.
The pattern can be a &str
, [char
], or a closure that determines if
a character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the matches
method can be used.
Examples
Basic usage:
let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect(); assert_eq!(v, ["abc", "abc", "abc"]); let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect(); assert_eq!(v, ["3", "2", "1"]);
ⓘImportant traits for MatchIndices<'a, P>pub fn match_indices<'a, P>(&'a self, pat: P) -> MatchIndices<'a, P> where
P: Pattern<'a>,
1.5.0[src]
pub fn match_indices<'a, P>(&'a self, pat: P) -> MatchIndices<'a, P> where
P: Pattern<'a>,
An iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.
For matches of pat
within self
that overlap, only the indices
corresponding to the first match are returned.
The pattern can be a &str
, [char
], or a closure that determines
if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator
if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, eg, [char
] but not for &str
.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatch_indices
method can be used.
Examples
Basic usage:
let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect(); assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]); let v: Vec<_> = "1abcabc2".match_indices("abc").collect(); assert_eq!(v, [(1, "abc"), (4, "abc")]); let v: Vec<_> = "ababa".match_indices("aba").collect(); assert_eq!(v, [(0, "aba")]); // only the first `aba`
ⓘImportant traits for RMatchIndices<'a, P>pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
1.5.0[src]
pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P> where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
An iterator over the disjoint matches of a pattern within self
,
yielded in reverse order along with the index of the match.
For matches of pat
within self
that overlap, only the indices
corresponding to the last match are returned.
The pattern can be a &str
, [char
], or a closure that determines if a
character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator
if a forward/reverse
search yields the same elements.
For iterating from the front, the match_indices
method can be used.
Examples
Basic usage:
let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect(); assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]); let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect(); assert_eq!(v, [(4, "abc"), (1, "abc")]); let v: Vec<_> = "ababa".rmatch_indices("aba").collect(); assert_eq!(v, [(2, "aba")]); // only the last `aba`
pub fn trim(&self) -> &str
1.0.0[src]
pub fn trim(&self) -> &str
Returns a string slice with leading and trailing whitespace removed.
'Whitespace' is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Examples
Basic usage:
let s = " Hello\tworld\t"; assert_eq!("Hello\tworld", s.trim());
pub fn trim_start(&self) -> &str
1.30.0[src]
pub fn trim_start(&self) -> &str
Returns a string slice with leading whitespace removed.
'Whitespace' is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Text directionality
A string is a sequence of bytes. start
in this context means the first
position of that byte string; for a left-to-right language like English or
Russian, this will be left side; and for right-to-left languages like
like Arabic or Hebrew, this will be the right side.
Examples
Basic usage:
let s = " Hello\tworld\t"; assert_eq!("Hello\tworld\t", s.trim_start());
Directionality:
let s = " English "; assert!(Some('E') == s.trim_start().chars().next()); let s = " עברית "; assert!(Some('ע') == s.trim_start().chars().next());
pub fn trim_end(&self) -> &str
1.30.0[src]
pub fn trim_end(&self) -> &str
Returns a string slice with trailing whitespace removed.
'Whitespace' is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Text directionality
A string is a sequence of bytes. end
in this context means the last
position of that byte string; for a left-to-right language like English or
Russian, this will be right side; and for right-to-left languages like
like Arabic or Hebrew, this will be the left side.
Examples
Basic usage:
let s = " Hello\tworld\t"; assert_eq!(" Hello\tworld", s.trim_end());
Directionality:
let s = " English "; assert!(Some('h') == s.trim_end().chars().rev().next()); let s = " עברית "; assert!(Some('ת') == s.trim_end().chars().rev().next());
pub fn trim_left(&self) -> &str
1.0.0[src]
pub fn trim_left(&self) -> &str
: superseded by trim_start
Returns a string slice with leading whitespace removed.
'Whitespace' is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Text directionality
A string is a sequence of bytes. 'Left' in this context means the first position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the right side, not the left.
Examples
Basic usage:
let s = " Hello\tworld\t"; assert_eq!("Hello\tworld\t", s.trim_left());
Directionality:
let s = " English"; assert!(Some('E') == s.trim_left().chars().next()); let s = " עברית"; assert!(Some('ע') == s.trim_left().chars().next());
pub fn trim_right(&self) -> &str
1.0.0[src]
pub fn trim_right(&self) -> &str
: superseded by trim_end
Returns a string slice with trailing whitespace removed.
'Whitespace' is defined according to the terms of the Unicode Derived
Core Property White_Space
.
Text directionality
A string is a sequence of bytes. 'Right' in this context means the last position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the left side, not the right.
Examples
Basic usage:
let s = " Hello\tworld\t"; assert_eq!(" Hello\tworld", s.trim_right());
Directionality:
let s = "English "; assert!(Some('h') == s.trim_right().chars().rev().next()); let s = "עברית "; assert!(Some('ת') == s.trim_right().chars().rev().next());
pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: DoubleEndedSearcher<'a>,
1.0.0[src]
pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: DoubleEndedSearcher<'a>,
Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.
The pattern can be a [char
] or a closure that determines if a
character matches.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar"); assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar"); let x: &[_] = &['1', '2']; assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
A more complex pattern, using a closure:
assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
pub fn trim_start_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
1.30.0[src]
pub fn trim_start_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str
, [char
], or a closure that determines if
a character matches.
Text directionality
A string is a sequence of bytes. 'Left' in this context means the first position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the right side, not the left.
Examples
Basic usage:
assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11"); assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123"); let x: &[_] = &['1', '2']; assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
pub fn trim_end_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
1.30.0[src]
pub fn trim_end_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str
, [char
], or a closure that
determines if a character matches.
Text directionality
A string is a sequence of bytes. 'Right' in this context means the last position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the left side, not the right.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar"); assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar"); let x: &[_] = &['1', '2']; assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
A more complex pattern, using a closure:
assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
pub fn trim_left_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
1.0.0[src]
pub fn trim_left_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
: superseded by trim_start_matches
Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, or a closure that determines if
a character matches.
Text directionality
A string is a sequence of bytes. 'Left' in this context means the first position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the right side, not the left.
Examples
Basic usage:
assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11"); assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123"); let x: &[_] = &['1', '2']; assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
1.0.0[src]
pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str where
P: Pattern<'a>,
<P as Pattern<'a>>::Searcher: ReverseSearcher<'a>,
: superseded by trim_end_matches
Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str
, char
, or a closure that
determines if a character matches.
Text directionality
A string is a sequence of bytes. 'Right' in this context means the last position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the left side, not the right.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar"); assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar"); let x: &[_] = &['1', '2']; assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
A more complex pattern, using a closure:
assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err> where
F: FromStr,
1.0.0[src]
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err> where
F: FromStr,
Parses this string slice into another type.
Because parse
is so general, it can cause problems with type
inference. As such, parse
is one of the few times you'll see
the syntax affectionately known as the 'turbofish': ::<>
. This
helps the inference algorithm understand specifically which type
you're trying to parse into.
parse
can parse any type that implements the FromStr
trait.
Errors
Will return Err
if it's not possible to parse this string slice into
the desired type.
Examples
Basic usage
let four: u32 = "4".parse().unwrap(); assert_eq!(4, four);
Using the 'turbofish' instead of annotating four
:
let four = "4".parse::<u32>(); assert_eq!(Ok(4), four);
Failing to parse:
let nope = "j".parse::<u32>(); assert!(nope.is_err());
pub fn is_ascii(&self) -> bool
1.23.0[src]
pub fn is_ascii(&self) -> bool
Checks if all characters in this string are within the ASCII range.
Examples
let ascii = "hello!\n"; let non_ascii = "Grüße, Jürgen ❤"; assert!(ascii.is_ascii()); assert!(!non_ascii.is_ascii());
pub fn eq_ignore_ascii_case(&self, other: &str) -> bool
1.23.0[src]
pub fn eq_ignore_ascii_case(&self, other: &str) -> bool
Checks that two strings are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b)
,
but without allocating and copying temporaries.
Examples
assert!("Ferris".eq_ignore_ascii_case("FERRIS")); assert!("Ferrös".eq_ignore_ascii_case("FERRöS")); assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
#[must_use = "this returns the replaced string as a new allocation, without modifying the original"]
pub fn replace<'a, P>(&'a self, from: P, to: &str) -> String where
P: Pattern<'a>,
1.0.0[src]
#[must_use = "this returns the replaced string as a new allocation, without modifying the original"]
pub fn replace<'a, P>(&'a self, from: P, to: &str) -> String where
P: Pattern<'a>,
Replaces all matches of a pattern with another string.
replace
creates a new String
, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice.
Examples
Basic usage:
let s = "this is old"; assert_eq!("this is new", s.replace("old", "new"));
When the pattern doesn't match:
let s = "this is old"; assert_eq!(s, s.replace("cookie monster", "little lamb"));
#[must_use = "this returns the replaced string as a new allocation, without modifying the original"]
pub fn replacen<'a, P>(&'a self, pat: P, to: &str, count: usize) -> String where
P: Pattern<'a>,
1.16.0[src]
#[must_use = "this returns the replaced string as a new allocation, without modifying the original"]
pub fn replacen<'a, P>(&'a self, pat: P, to: &str, count: usize) -> String where
P: Pattern<'a>,
Replaces first N matches of a pattern with another string.
replacen
creates a new String
, and copies the data from this string slice into it.
While doing so, it attempts to find matches of a pattern. If it finds any, it
replaces them with the replacement string slice at most count
times.
Examples
Basic usage:
let s = "foo foo 123 foo"; assert_eq!("new new 123 foo", s.replacen("foo", "new", 2)); assert_eq!("faa fao 123 foo", s.replacen('o', "a", 3)); assert_eq!("foo foo new23 foo", s.replacen(char::is_numeric, "new", 1));
When the pattern doesn't match:
let s = "this is old"; assert_eq!(s, s.replacen("cookie monster", "little lamb", 10));
pub fn to_lowercase(&self) -> String
1.2.0[src]
pub fn to_lowercase(&self) -> String
Returns the lowercase equivalent of this string slice, as a new String
.
'Lowercase' is defined according to the terms of the Unicode Derived Core Property
Lowercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a String
instead of modifying the
parameter in-place.
Examples
Basic usage:
let s = "HELLO"; assert_eq!("hello", s.to_lowercase());
A tricky example, with sigma:
let sigma = "Σ"; assert_eq!("σ", sigma.to_lowercase()); // but at the end of a word, it's ς, not σ: let odysseus = "ὈΔΥΣΣΕΎΣ"; assert_eq!("ὀδυσσεύς", odysseus.to_lowercase());
Languages without case are not changed:
let new_year = "农历新年"; assert_eq!(new_year, new_year.to_lowercase());
pub fn to_uppercase(&self) -> String
1.2.0[src]
pub fn to_uppercase(&self) -> String
Returns the uppercase equivalent of this string slice, as a new String
.
'Uppercase' is defined according to the terms of the Unicode Derived Core Property
Uppercase
.
Since some characters can expand into multiple characters when changing
the case, this function returns a String
instead of modifying the
parameter in-place.
Examples
Basic usage:
let s = "hello"; assert_eq!("HELLO", s.to_uppercase());
Scripts without case are not changed:
let new_year = "农历新年"; assert_eq!(new_year, new_year.to_uppercase());
pub fn escape_debug(&self) -> String
[src]
pub fn escape_debug(&self) -> String
🔬 This is a nightly-only experimental API. (str_escape
)
return type may change to be an iterator
Escapes each char in s
with char::escape_debug
.
Note: only extended grapheme codepoints that begin the string will be escaped.
pub fn escape_default(&self) -> String
[src]
pub fn escape_default(&self) -> String
🔬 This is a nightly-only experimental API. (str_escape
)
return type may change to be an iterator
Escapes each char in s
with char::escape_default
.
pub fn escape_unicode(&self) -> String
[src]
pub fn escape_unicode(&self) -> String
🔬 This is a nightly-only experimental API. (str_escape
)
return type may change to be an iterator
Escapes each char in s
with char::escape_unicode
.
pub fn repeat(&self, n: usize) -> String
1.16.0[src]
pub fn repeat(&self, n: usize) -> String
Creates a new String
by repeating a string n
times.
Panics
This function will panic if the capacity would overflow.
Examples
Basic usage:
assert_eq!("abc".repeat(4), String::from("abcabcabcabc"));
A panic upon overflow:
fn main() { // this will panic at runtime "0123456789abcdef".repeat(usize::max_value()); }
pub fn to_ascii_uppercase(&self) -> String
1.23.0[src]
pub fn to_ascii_uppercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII upper case equivalent.
ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase
.
To uppercase ASCII characters in addition to non-ASCII characters, use
to_uppercase
.
Examples
let s = "Grüße, Jürgen ❤"; assert_eq!("GRüßE, JüRGEN ❤", s.to_ascii_uppercase());
pub fn to_ascii_lowercase(&self) -> String
1.23.0[src]
pub fn to_ascii_lowercase(&self) -> String
Returns a copy of this string where each character is mapped to its ASCII lower case equivalent.
ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase
.
To lowercase ASCII characters in addition to non-ASCII characters, use
to_lowercase
.
Examples
let s = "Grüße, Jürgen ❤"; assert_eq!("grüße, jürgen ❤", s.to_ascii_lowercase());
Trait Implementations
impl<'a> InputTakeAtPosition for CompleteStr<'a>
[src]
impl<'a> InputTakeAtPosition for CompleteStr<'a>
type Item = char
fn split_at_position<P>(&self, predicate: P) -> IResult<Self, Self, u32> where
P: Fn(Self::Item) -> bool,
[src]
fn split_at_position<P>(&self, predicate: P) -> IResult<Self, Self, u32> where
P: Fn(Self::Item) -> bool,
fn split_at_position1<P>(
&self,
predicate: P,
e: ErrorKind<u32>
) -> IResult<Self, Self, u32> where
P: Fn(Self::Item) -> bool,
[src]
fn split_at_position1<P>(
&self,
predicate: P,
e: ErrorKind<u32>
) -> IResult<Self, Self, u32> where
P: Fn(Self::Item) -> bool,
impl<'a> Clone for CompleteStr<'a>
[src]
impl<'a> Clone for CompleteStr<'a>
fn clone(&self) -> CompleteStr<'a>
[src]
fn clone(&self) -> CompleteStr<'a>
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0[src]
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from source
. Read more
impl<'a> Copy for CompleteStr<'a>
[src]
impl<'a> Copy for CompleteStr<'a>
impl<'a> Debug for CompleteStr<'a>
[src]
impl<'a> Debug for CompleteStr<'a>
fn fmt(&self, f: &mut Formatter) -> Result
[src]
fn fmt(&self, f: &mut Formatter) -> Result
Formats the value using the given formatter. Read more
impl<'a> PartialEq for CompleteStr<'a>
[src]
impl<'a> PartialEq for CompleteStr<'a>
fn eq(&self, other: &CompleteStr<'a>) -> bool
[src]
fn eq(&self, other: &CompleteStr<'a>) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, other: &CompleteStr<'a>) -> bool
[src]
fn ne(&self, other: &CompleteStr<'a>) -> bool
This method tests for !=
.
impl<'a> Eq for CompleteStr<'a>
[src]
impl<'a> Eq for CompleteStr<'a>
impl<'a> Hash for CompleteStr<'a>
[src]
impl<'a> Hash for CompleteStr<'a>
fn hash<__H: Hasher>(&self, state: &mut __H)
[src]
fn hash<__H: Hasher>(&self, state: &mut __H)
Feeds this value into the given [Hasher
]. Read more
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
1.3.0[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher,
Feeds a slice of this type into the given [Hasher
]. Read more
impl<'a> From<&'a str> for CompleteStr<'a>
[src]
impl<'a> From<&'a str> for CompleteStr<'a>
impl<'a, 'b> From<&'b &'a str> for CompleteStr<'a>
[src]
impl<'a, 'b> From<&'b &'a str> for CompleteStr<'a>
impl<'a> Display for CompleteStr<'a>
[src]
impl<'a> Display for CompleteStr<'a>
fn fmt(&self, f: &mut Formatter) -> Result
[src]
fn fmt(&self, f: &mut Formatter) -> Result
Formats the value using the given formatter. Read more
impl<'a> AsRef<str> for CompleteStr<'a>
[src]
impl<'a> AsRef<str> for CompleteStr<'a>
impl<'a> Deref for CompleteStr<'a>
[src]
impl<'a> Deref for CompleteStr<'a>
type Target = &'a str
The resulting type after dereferencing.
fn deref(&self) -> &Self::Target
[src]
fn deref(&self) -> &Self::Target
Dereferences the value.
impl<'a> AtEof for CompleteStr<'a>
[src]
impl<'a> AtEof for CompleteStr<'a>
impl<'a> Slice<Range<usize>> for CompleteStr<'a>
[src]
impl<'a> Slice<Range<usize>> for CompleteStr<'a>
impl<'a> Slice<RangeTo<usize>> for CompleteStr<'a>
[src]
impl<'a> Slice<RangeTo<usize>> for CompleteStr<'a>
impl<'a> Slice<RangeFrom<usize>> for CompleteStr<'a>
[src]
impl<'a> Slice<RangeFrom<usize>> for CompleteStr<'a>
impl<'a> Slice<RangeFull> for CompleteStr<'a>
[src]
impl<'a> Slice<RangeFull> for CompleteStr<'a>
impl<'a> InputIter for CompleteStr<'a>
[src]
impl<'a> InputIter for CompleteStr<'a>
type Item = char
type RawItem = char
type Iter = CharIndices<'a>
type IterElem = Chars<'a>
fn iter_indices(&self) -> Self::Iter
[src]
fn iter_indices(&self) -> Self::Iter
returns an iterator over the elements and their byte offsets
fn iter_elements(&self) -> Self::IterElem
[src]
fn iter_elements(&self) -> Self::IterElem
returns an iterator over the elements
fn position<P>(&self, predicate: P) -> Option<usize> where
P: Fn(Self::RawItem) -> bool,
[src]
fn position<P>(&self, predicate: P) -> Option<usize> where
P: Fn(Self::RawItem) -> bool,
finds the byte position of the element
fn slice_index(&self, count: usize) -> Option<usize>
[src]
fn slice_index(&self, count: usize) -> Option<usize>
get the byte offset from the element's position in the stream
impl<'a> InputTake for CompleteStr<'a>
[src]
impl<'a> InputTake for CompleteStr<'a>
fn take(&self, count: usize) -> Self
[src]
fn take(&self, count: usize) -> Self
returns a slice of count
bytes. panics if count > length
fn take_split(&self, count: usize) -> (Self, Self)
[src]
fn take_split(&self, count: usize) -> (Self, Self)
split the stream at the count
byte offset. panics if count > length
impl<'a> InputLength for CompleteStr<'a>
[src]
impl<'a> InputLength for CompleteStr<'a>
fn input_len(&self) -> usize
[src]
fn input_len(&self) -> usize
calculates the input length, as indicated by its name, and the name of the trait itself Read more
impl<'a, 'b> Compare<&'b str> for CompleteStr<'a>
[src]
impl<'a, 'b> Compare<&'b str> for CompleteStr<'a>
fn compare(&self, t: &'b str) -> CompareResult
[src]
fn compare(&self, t: &'b str) -> CompareResult
compares self to another value for equality
fn compare_no_case(&self, t: &'b str) -> CompareResult
[src]
fn compare_no_case(&self, t: &'b str) -> CompareResult
compares self to another value for equality independently of the case. Read more
impl<'a, 'b> FindSubstring<&'b str> for CompleteStr<'a>
[src]
impl<'a, 'b> FindSubstring<&'b str> for CompleteStr<'a>
fn find_substring(&self, substr: &'b str) -> Option<usize>
[src]
fn find_substring(&self, substr: &'b str) -> Option<usize>
impl<'a> FindToken<char> for CompleteStr<'a>
[src]
impl<'a> FindToken<char> for CompleteStr<'a>
fn find_token(&self, token: char) -> bool
[src]
fn find_token(&self, token: char) -> bool
impl<'a> FindToken<u8> for CompleteStr<'a>
[src]
impl<'a> FindToken<u8> for CompleteStr<'a>
fn find_token(&self, token: u8) -> bool
[src]
fn find_token(&self, token: u8) -> bool
impl<'a, 'b> FindToken<&'a u8> for CompleteStr<'b>
[src]
impl<'a, 'b> FindToken<&'a u8> for CompleteStr<'b>
fn find_token(&self, token: &u8) -> bool
[src]
fn find_token(&self, token: &u8) -> bool
impl<'a, R: FromStr> ParseTo<R> for CompleteStr<'a>
[src]
impl<'a, R: FromStr> ParseTo<R> for CompleteStr<'a>
impl<'a> Offset for CompleteStr<'a>
[src]
impl<'a> Offset for CompleteStr<'a>
fn offset(&self, second: &CompleteStr<'a>) -> usize
[src]
fn offset(&self, second: &CompleteStr<'a>) -> usize
offset between the first byte of self and the first byte of the argument
impl<'a> AsBytes for CompleteStr<'a>
[src]
impl<'a> AsBytes for CompleteStr<'a>
impl<'a> ExtendInto for CompleteStr<'a>
[src]
impl<'a> ExtendInto for CompleteStr<'a>
type Item = char
type Extender = String
fn new_builder(&self) -> String
[src]
fn new_builder(&self) -> String
create a new Extend
of the correct type
fn extend_into(&self, acc: &mut String)
[src]
fn extend_into(&self, acc: &mut String)
accumulate the input into an accumulator
Auto Trait Implementations
impl<'a> Send for CompleteStr<'a>
impl<'a> Send for CompleteStr<'a>
impl<'a> Sync for CompleteStr<'a>
impl<'a> Sync for CompleteStr<'a>
Blanket Implementations
impl<T> ToOwned for T where
T: Clone,
[src]
impl<T> ToOwned for T where
T: Clone,
type Owned = T
fn to_owned(&self) -> T
[src]
fn to_owned(&self) -> T
Creates owned data from borrowed data, usually by cloning. Read more
fn clone_into(&self, target: &mut T)
[src]
fn clone_into(&self, target: &mut T)
🔬 This is a nightly-only experimental API. (toowned_clone_into
)
recently added
Uses borrowed data to replace owned data, usually by cloning. Read more
impl<T> From for T
[src]
impl<T> From for T
impl<T> ToString for T where
T: Display + ?Sized,
[src]
impl<T> ToString for T where
T: Display + ?Sized,
impl<T, U> Into for T where
U: From<T>,
[src]
impl<T, U> Into for T where
U: From<T>,
impl<T, U> TryFrom for T where
T: From<U>,
[src]
impl<T, U> TryFrom for T where
T: From<U>,
type Error = !
try_from
)The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
try_from
)Performs the conversion.
impl<T> Borrow for T where
T: ?Sized,
[src]
impl<T> Borrow for T where
T: ?Sized,
ⓘImportant traits for &'a mut Rfn borrow(&self) -> &T
[src]
fn borrow(&self) -> &T
Immutably borrows from an owned value. Read more
impl<T, U> TryInto for T where
U: TryFrom<T>,
[src]
impl<T, U> TryInto for T where
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
try_from
)The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
try_from
)Performs the conversion.
impl<T> BorrowMut for T where
T: ?Sized,
[src]
impl<T> BorrowMut for T where
T: ?Sized,
ⓘImportant traits for &'a mut Rfn borrow_mut(&mut self) -> &mut T
[src]
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
impl<T> Any for T where
T: 'static + ?Sized,
[src]
impl<T> Any for T where
T: 'static + ?Sized,
fn get_type_id(&self) -> TypeId
[src]
fn get_type_id(&self) -> TypeId
🔬 This is a nightly-only experimental API. (get_type_id
)
this method will likely be replaced by an associated static
Gets the TypeId
of self
. Read more